実験論文IIが完成し、昨日からオンラインで読めるようになりました。
タイトルは、
Collective Adoption of Max-Min Strategy in an Information Cascade Voting Experiment
ヒトが他人の回答をカンニングしながら2択のクイズに答える実験です。実験論文Iでは、この系で相転移が起こることを示しました。クイズの正解を知らないヒト(多数派に群れるヒトという意味でハーダーと呼んでいます)の比率が90%以下なら、十分多くのヒトが回答すれば多数派が正解になる。けれど、ハーダーの比率が90%を越えると、十分多くのヒトが回答しても必ずしも正解にならない。多数派が間違える確率は40%になり、ランダムに回答するのと大差ないことになる。こうした相転移が存在することを実験データと理論モデルで示し、情報カスケード相転移と名付けたものでした。
つまり、2択のクイズを十分多数の集団にカンニングさせながら回答させると、そのクイズが10人に1人以下しか正解を知らない問題であるなら、100回に40回は多数派の選択は間違っているけれど、10人中2人以上が正解を知っているなら、多数派の選択は正しい。そして、こうした水が氷になるような質的な変化は、十分多数のヒトの極限(専門用語では熱力学極限)で相転移となり、水が氷になる変化と同列に語ることができる。
この「カンニング」で被験者に与えた情報は、2択の各選択肢を選択したヒトの数。相転移が起こる理由は、その数に対するハーダーの反応が鋭いから。左図はその実験データを示したものです。横軸が選択肢Aを選んだヒトの比率、縦軸にはその情報をカンニングしてハーダーがAを選ぶ確率を描いたものです。図はAを選んだヒトの比率50%を原点とした原点対称になるので、50%以上をプロットしています。
10人中5人がAを選んだ場合(n1/t=0.5)、ハーダーが選ぶ確率はA、B共に同じで50%。しかし、10人中6人がAを選ぶと、Aを選ぶ確率は70%まで上がる。さらにAを選ぶヒトの数が増えるとAを選ぶ確率は上昇するのですが、重要なのは10人中5人から10人中6人での選択の確率の変化。この変化が鋭く、青の点線で示した対角線よりも上にある時、系は相転移を起こします。この変化が鈍く、ニュートラルの50%から10人中6人で60%以下にしかならず、対角線よりも下にくると相転移は起きません。 このような確率の急激な増加は動物界でもよく見られ、Quorum 反応と呼ばれたりするそうです。ヒトの場合、絶対数に対する反応ではなく、あくまで率に対する反応なので、その点がQuorum反応とは異なりますが、起きる現象は非常に似ています。
では、「カンニング」で与える情報を各選択肢を選んだヒトの数ではなく、オッズにするとどうなるでしょう。ここでオッズは各選択肢を選んだヒトの数の逆数に比例し、競馬のオッズと同じく、正解を選んだことに対するリターンはオッズに比例するとします。例えば、10人のうち、Aを9人、Bを1人選んだ状況では、Aのオッズは自分の選択を含めた11をAを選んだ9人+自分1人の10人で割って1.1倍。Bのオッズは11をBを選んだ1人+自分の2人で割って5.5とします。このとき、ヒトはどのように選択し、その結果、十分多数のヒトが回答すると何が起きるのか?それが今回の論文で扱った問題です。
正解を選んだことに対するリターンがオッズに無関係の場合、選択者数を与えた場合と同じことになります。オッズが小さい=選択者数が多い、オッズが大きい=選択者数が少ない、なので、オッズの小さな選択肢にハーダー(正解を知らないヒト)の選択が集中するでしょう。しかし、今回の実験ではオッズが小さい選択肢はそれを選んで正解してもリターンが小さく魅力にかけます。一方、オッズが大きな選択肢は、人気のない選択肢なので間違っている確率が高いでしょうが、それを選んで正解すればリターンは大きく魅力的です。もちろん、正解を知っているヒトには選択の余地はありません。オッズが小さくリターンが小さくても、それを選ぶしかない。では、ハーダーはどうするのか?どうするのが正しいのか?
ゲーム論的には、この状況はゼロサムゲームになり、Max-Min戦略をとるのが最適であることが知られています。そのMax-Min戦略とは、共同研究者の久門さんによると「選択肢を選ぶ比率をオッズに逆比例させ、比率×オッズが選択肢A、Bで同じになるようにしなさい」というものです。そうすれば、A、Bが正しい確率がどうであっても、その不確定性を消すことが可能である。このように、オッズに逆比例する比率は、オッズが選択者数に逆比例したので、選択者数に比例する比率と同じことが分かります。つまり、10人中6人がA、4人がBを選んでいる場合、60%の比率でA、40%の比率でBを選ぶのがゲーム論的に正しいということです。もし、ハーダーがこのように選択をするなら、上記の相転移は起こらず、どんなに難しい問題であっても、十分多数のヒトが回答すれば、多数派の選択肢が正しいことが分かります。
では、実際にはどうなのでしょう。左図が実験結果です。選択者数を与えたときの上図の振る舞いとは異なり、ほぼ対角線に乗っていることが分かります。これはゲーム論での最適戦略を被験者集団が採用していることを意味します。ただし、Aを選ぶヒトの比率が3/4を越えると、Aを選ぶ確率は3/4のままで増加しません。これは、オッズが小さくなりすぎ、Aの魅力が低下したため、オッズの大きなBを選択する傾向が増したためと考えられます。もちろん、この傾向は最適な振る舞いではないのですが、競馬でも万馬券狙いのバイアス(Favorite-logshot bias)があることが知られていて、それと同じことが起きているのでしょう。もっとも、クイズの場合、万馬券(倍率100倍)とは程遠く、たかだか4倍程度の倍率のオッズでヒトが欲に目が眩んでいるのですが。
また、10人中7人程度のところで、対角線を微妙に越えていることも分かります。この結果は、オッズを与えた場合でも相転移することを意味します。ただし、相転移が起こるハーダーの比率は非常に高く、シミュレーションでは99%。この結果は、100人中1人しか正解を知らない問題なら、相転移し、多数派が間違うこともあるけれど、10人中1人の状況なら、そうした事は起きないことを意味します。
以上が論文内容。2010年の夏からこうした実験を始め、まるまる2年かけたものです。こうした内容を微妙ととるか、面白いととるかは、ヒトそれぞれ。私自身は十分楽しい(苦しい!)ものでした。
共同研究者の久門さん、高橋先生、および実験を手伝ってくれた北大のニコルさん、中村さん、北里大の入江君と2010年の卒研生のメンバーの神田朋彦ヘンリー君、石澤遼君、熊谷直紀君、辻崇史君(元気にしてますか?)、また実験に参加してくれた北大および北里大のみなさん、ありがとうございました。
追記:11月15日にPhyscal Review Eに投稿したら速攻で雑誌が違うからという理由でリジェクト。前途多難な予感がします。
2012年11月16日金曜日
2012年11月7日水曜日
量子論の基礎
「量子力学を学ぶのにいいテキストは?」ときかれて、私が推薦するのがJ.J.SakuraiのModern Quantum Mechanics。自分が学生のときに最初に読んだ量子力学のテキストであり、その構成に感動したからというのが理由。なぜ、Sakuraiだったのかというと、当時入っていた東大駒場のサークル「自然科学研究会」の先輩が「いい本」だと輪講していて、それに影響されての選択でした。
Sakuraiのすばらしいところは、量子論の「状態」「観測」をまず1個のスピンというもっとも単純な系で展開すること。それによって、ブラ・ケット、内積、エルミート演算子、固有ケット、展開係数、確率を導入し、古典論との違いを際立たせる構成をとっていました。
一方、その他の名著とされるシッフやメシアはシュレーディンガー方程式を解くことに力点をおいていて、はっきり言っておもしろくなかった。
こうした経験からSakuraiの本を推薦してきたのですが、明日の11月8日、9日に東大の清水明先生が「ベルの不等式」に関して講義されるとのことだったので、評判のよい「量子論の基礎」を読んでみました。
結論から言えば、おもしろい本です。Sakuraiのテキストを彷彿とさせる簡潔・明晰なテキストで、量子論での状態、観測量、確率解釈、時間発展、理想測定の5つの要請をもとに展開します。特におもしろかったのが理想測定というもので、Sakuraiでは登場しなかった概念。また、不確定性原理に関しても、ハイゼンベルグのもの(測定誤差と測定による撹乱による誤差)、非可換な演算子の別個の観測によるもの、同時の観測によるもの、を分けて(結果だけですが)解説している点もすばらしい点です。
また、異なる場所での観測の間の相関に関する 不等式(ベルの不等式)は、局所実在論の系では必ず成立するが、量子論ではそれが破れることを予言し、実験でも検証されているので、量子論は局所実在論を越えた理論である点がその本質なのだとあります。
という感じで、すばらしい本なのですが、不満点をいくつか。まず、理想測定をどう実現するのかが分からないので、要請5を置く意味がよく分からない。量子力学を勉強していて一番難解なのが「観測とは何か?」であり、特に「いつ観測されたと考えるのか」がいまだに私には分かりません。例えば、スピンの観測では非一様磁場によるシュテルン・ゲルラッハのが有名ですが、磁場が弱い場合、磁場の素のフォトンとスピンが相互作用せず、観測されたことにはならないはず。では、どこから「観測は始まるのか?」とか。こういうのは、私の量子光学やレーザー物理に対する理解不足からくるものではあるのですが、そうした点を含め「量子測定理論」のエッセンスが欲しかった。
また、これはテキストに対する不満ではないのですが、ベルの不等式は確かに局所実在論を明晰に否定したことは事実ですが、内容は干渉効果なので、ダブルスリットによる電子の干渉と内容的にはパラレル。二つのスリットのどちらかを通るという局所実在論を干渉縞が否定するのと物理的には同じなのでは、と。もちろん、ダブルスリットだけなら、局所実在論を保ちながら干渉縞を説明する理論はできる?ので、そうした曖昧さを完璧に排除する点で「ベルの不等式の破れ」はすごいことは理解できるのですが。
とにかく明日、明後日の講義が楽しみです。
追記:高校から大学に入ったころは、Sakuraiやフランコ・セレリの「量子力学論争」などを読んで、量子力学を究めるつもりだったのが、いまではヒトを使った集団社会実験とそのモデル化や競馬の研究をやっている。いったいどこで間違ったのか、と考えていくと、素粒子論の勉強で数学にハマったのが元凶。もういちど量子をやるか、それともヒトの意思決定の闇に切り込むか、迷うところです。ヒトの意思決定にも量子論が使われていて、眉つばだとは思うのですが、観測に対する撹乱などを考えていくと、量子論の枠組みは有効なのかもしれません。ヒトの意思決定は局所実在論ではとらえきれるとは思えないし。そこを明晰にえぐり出す「ヒトのベルの不等式」を定式化して実験で示せればいいのでしょうが(もっとも、ヒトの考えることは同じなので、やろうとしているヒトはいるはず。要はアイデアと実験をやりきる力)。
追記2:特別講義は非常に面白いものでした。ただ、「実在性」といわれてピンとくる学生さんでないと、なかなか難しい面もありました。話はEPR(Einstein-Podorsky-Rosen)の論文から始まるのですが、そこで定義される「実在性」の定義がツッコミどころ満載のもの。ただ、学生むけなので、私があまり質問するのも気がひけるので極力スルー。そして、古典的な素朴実在論は否定され、量子論という局所(=因果律)理論で現象が記述出来ることをベルの不等式が破れることで一網打尽に示し、残りは最近の研究の紹介。数式もほとんどなく(北里では量子も統計力学も選択科目という事情に配慮されてのものでしょうが、最後に「線形代数はやってますか?」という質問が出たことにショックを受けている学生さんも)、わかりやすく話していただきました。ただ、古典的な素朴な実在論は否定されても、「状態、物理量は、それを準備・観測する実験装置まで含めれば実在だ」と答えていただいた(私の誤解でなければ)ので、実在性を否定したわけではない。
理想測定について講義後に質問させていただいたのですが、シュテルン・ゲルラッハの実験のような磁場が非常に強く、観測誤差が小さい実験のことであると教えていただきました。詳しくはPhysics Report(2005)にFAQがあるとのことなので、時間が出来たら勉強してみたいと思います。
Sakuraiのすばらしいところは、量子論の「状態」「観測」をまず1個のスピンというもっとも単純な系で展開すること。それによって、ブラ・ケット、内積、エルミート演算子、固有ケット、展開係数、確率を導入し、古典論との違いを際立たせる構成をとっていました。
一方、その他の名著とされるシッフやメシアはシュレーディンガー方程式を解くことに力点をおいていて、はっきり言っておもしろくなかった。
こうした経験からSakuraiの本を推薦してきたのですが、明日の11月8日、9日に東大の清水明先生が「ベルの不等式」に関して講義されるとのことだったので、評判のよい「量子論の基礎」を読んでみました。
結論から言えば、おもしろい本です。Sakuraiのテキストを彷彿とさせる簡潔・明晰なテキストで、量子論での状態、観測量、確率解釈、時間発展、理想測定の5つの要請をもとに展開します。特におもしろかったのが理想測定というもので、Sakuraiでは登場しなかった概念。また、不確定性原理に関しても、ハイゼンベルグのもの(測定誤差と測定による撹乱による誤差)、非可換な演算子の別個の観測によるもの、同時の観測によるもの、を分けて(結果だけですが)解説している点もすばらしい点です。
また、異なる場所での観測の間の相関に関する 不等式(ベルの不等式)は、局所実在論の系では必ず成立するが、量子論ではそれが破れることを予言し、実験でも検証されているので、量子論は局所実在論を越えた理論である点がその本質なのだとあります。
という感じで、すばらしい本なのですが、不満点をいくつか。まず、理想測定をどう実現するのかが分からないので、要請5を置く意味がよく分からない。量子力学を勉強していて一番難解なのが「観測とは何か?」であり、特に「いつ観測されたと考えるのか」がいまだに私には分かりません。例えば、スピンの観測では非一様磁場によるシュテルン・ゲルラッハのが有名ですが、磁場が弱い場合、磁場の素のフォトンとスピンが相互作用せず、観測されたことにはならないはず。では、どこから「観測は始まるのか?」とか。こういうのは、私の量子光学やレーザー物理に対する理解不足からくるものではあるのですが、そうした点を含め「量子測定理論」のエッセンスが欲しかった。
また、これはテキストに対する不満ではないのですが、ベルの不等式は確かに局所実在論を明晰に否定したことは事実ですが、内容は干渉効果なので、ダブルスリットによる電子の干渉と内容的にはパラレル。二つのスリットのどちらかを通るという局所実在論を干渉縞が否定するのと物理的には同じなのでは、と。もちろん、ダブルスリットだけなら、局所実在論を保ちながら干渉縞を説明する理論はできる?ので、そうした曖昧さを完璧に排除する点で「ベルの不等式の破れ」はすごいことは理解できるのですが。
とにかく明日、明後日の講義が楽しみです。
追記:高校から大学に入ったころは、Sakuraiやフランコ・セレリの「量子力学論争」などを読んで、量子力学を究めるつもりだったのが、いまではヒトを使った集団社会実験とそのモデル化や競馬の研究をやっている。いったいどこで間違ったのか、と考えていくと、素粒子論の勉強で数学にハマったのが元凶。もういちど量子をやるか、それともヒトの意思決定の闇に切り込むか、迷うところです。ヒトの意思決定にも量子論が使われていて、眉つばだとは思うのですが、観測に対する撹乱などを考えていくと、量子論の枠組みは有効なのかもしれません。ヒトの意思決定は局所実在論ではとらえきれるとは思えないし。そこを明晰にえぐり出す「ヒトのベルの不等式」を定式化して実験で示せればいいのでしょうが(もっとも、ヒトの考えることは同じなので、やろうとしているヒトはいるはず。要はアイデアと実験をやりきる力)。
追記2:特別講義は非常に面白いものでした。ただ、「実在性」といわれてピンとくる学生さんでないと、なかなか難しい面もありました。話はEPR(Einstein-Podorsky-Rosen)の論文から始まるのですが、そこで定義される「実在性」の定義がツッコミどころ満載のもの。ただ、学生むけなので、私があまり質問するのも気がひけるので極力スルー。そして、古典的な素朴実在論は否定され、量子論という局所(=因果律)理論で現象が記述出来ることをベルの不等式が破れることで一網打尽に示し、残りは最近の研究の紹介。数式もほとんどなく(北里では量子も統計力学も選択科目という事情に配慮されてのものでしょうが、最後に「線形代数はやってますか?」という質問が出たことにショックを受けている学生さんも)、わかりやすく話していただきました。ただ、古典的な素朴な実在論は否定されても、「状態、物理量は、それを準備・観測する実験装置まで含めれば実在だ」と答えていただいた(私の誤解でなければ)ので、実在性を否定したわけではない。
理想測定について講義後に質問させていただいたのですが、シュテルン・ゲルラッハの実験のような磁場が非常に強く、観測誤差が小さい実験のことであると教えていただきました。詳しくはPhysics Report(2005)にFAQがあるとのことなので、時間が出来たら勉強してみたいと思います。
2012年11月6日火曜日
ライアーゲーム@北里祭
平成24年11月3,4日の北里祭で実施した「シミュレーション ライアーゲーム」が無事に終了しました。
3日の土曜日は6ゲーム、4日の日曜日は10ゲームで100名弱の一般の方の参加がありました。土曜日はなかなかお客さんが集まらず心配したのですが、日曜日は朝11時前から午後4時までフル稼働でゲームを実施できたようでなによりです。私の娘も2回参戦し、1回勝てたのがうれしかったようです。私も一度参戦しましたが、これは難しい。必勝法もなく単にランダムに選択し、負けたという感じでした。
一方、社会物理実験として行った二択のクイズのほうは、システムの不備などがあり、十数名しか参加できなかったのが残念です。
ゲームを盛り上げてくれたPHYSICS部のみなさん、また司会で活躍してくれた石田君、長洲君、ありがとうございました。入江君も初めてデータがとれたのはなによりです。 近いうちに「夢庵」で打ち上げをしましょう。11月26日(月)午後7時あたりでしょうでしょうか?(もっと近い日程てもいいですが。)
来年の学祭もPHYSICS部とコラボできるならぜひお願いします新たなゲームを考えて、今年以上の人を集められるようにしたいと思います。また、社会物理実験も心理学的な面を加味して、パワーアップをはかりたいと思います。
ゲームで得たデータから何か面白いことが分かるかどうかは分かりませんが、このゲームで得たデータは世界にここしかない貴重なものなので、それが得られたことはうれしいです。もし興味があれば、石田君の卒論発表を楽しみにしてください。もちろん、個人的にききに来てくれてもいいです。
ありがとうございました。
3日の土曜日は6ゲーム、4日の日曜日は10ゲームで100名弱の一般の方の参加がありました。土曜日はなかなかお客さんが集まらず心配したのですが、日曜日は朝11時前から午後4時までフル稼働でゲームを実施できたようでなによりです。私の娘も2回参戦し、1回勝てたのがうれしかったようです。私も一度参戦しましたが、これは難しい。必勝法もなく単にランダムに選択し、負けたという感じでした。
一方、社会物理実験として行った二択のクイズのほうは、システムの不備などがあり、十数名しか参加できなかったのが残念です。
ゲームを盛り上げてくれたPHYSICS部のみなさん、また司会で活躍してくれた石田君、長洲君、ありがとうございました。入江君も初めてデータがとれたのはなによりです。 近いうちに「夢庵」で打ち上げをしましょう。11月26日(月)午後7時あたりでしょうでしょうか?(もっと近い日程てもいいですが。)
来年の学祭もPHYSICS部とコラボできるならぜひお願いします新たなゲームを考えて、今年以上の人を集められるようにしたいと思います。また、社会物理実験も心理学的な面を加味して、パワーアップをはかりたいと思います。
ゲームで得たデータから何か面白いことが分かるかどうかは分かりませんが、このゲームで得たデータは世界にここしかない貴重なものなので、それが得られたことはうれしいです。もし興味があれば、石田君の卒論発表を楽しみにしてください。もちろん、個人的にききに来てくれてもいいです。
ありがとうございました。
登録:
投稿 (Atom)